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We present a simple yet accurate method for the calculation of effective moments of inertia for large-amplitude
low-frequency internal motions in molecules. Our technique makes use of the quantum-mechanical kinetic
energy operator developed within the internal coordinate path Hamiltonian formalism, with the imposition of
Eckart conditions on the molecular frame to separate the internal motion from overall molecular rotation.
Numerical results are presented for several molecules possessing internal large-amplitude motions. These
results are compared with those obtained from approximate analytic formulas proposed by Pitzer. We also
give detailed examples where the conventional approximations in the current literature are not applicable for
describing a single large-amplitude motion. Our straightforward algorithm yields results more accurate than
those of Pitzer’s method, especially for molecules with asymmetric internal rotors.

I. Introduction

The “separability assumption” of the rigid rotor, harmonic
oscillator model is one of the simplest and most extensively
used standards for the calculation of spectroscopic quantities
in gas-phase molecules. Following this widely adopted assump-
tion, the quantum-mechanical energies are a sum of four separate
contributions corresponding to electronic, vibrational, rotational,
and translational motions. Since a complete set of molecular
energy levels is rarely available, this independent normal-mode
approximation is practical and sometimes reasonable. Indeed,
the available evidence in standard data tables and the NIST
Webbook1 indicates that this separability approximation permits
successful computation of the spectroscopic properties of some
stable molecules. However, in many cases, a molecule may
contain several low-frequency modes that are not well ap-
proximated as small-amplitude harmonic oscillations. The most
common example of these floppy modes is an internal rotation
about a bond between separate functional groups in a molecule.
In addition to internal torsions, other anharmonic motions
include bending modes which involve large changes in the angle
between two bonds. Uncertainties in how to treat these internal
torsions and bending motions can give rise to significant errors
in spectroscopic calculations.

When a large-amplitude motion is present, the nuclear
Hamiltonian cannot be separated to quadratic order in both the
kinetic and potential energy. In addition, one frequently finds
that the optimized bond lengths and angles are functions of the
large-amplitude coordinate. As a result, the vibrational frequen-
cies of the small-amplitude modes also vary with the large-
amplitude coordinate. This raises complex issues about how one
should rigorously define the normal coordinates and separate
them from the large-amplitude coordinate as well as from the
external rotation of the molecule. In many cases, there will be
more than one large-amplitude mode, and these will all be
coupled together as well as to all of the normal modes. The
present paper focuses on the calculation of molecular parameters

where only one large-amplitude motion is coupled to the other
vibrational modes and to the overall external rotation in
molecules. Special emphasis is placed on internal rotations, but
the formalism developed in this work is applicable to any large-
amplitude motion. A later paper will employ these methods to
show how measurement of changes in the dipole moment for
excitations along a large-amplitude bending coordinate provides
a method to identify particular vibrational levels via the Stark
effect.2

The conventional approach to computing the effective reduced
inertias for internal rotations is through the use of approximate
analytical formulas.3-5 Pitzer and co-workers developed several
expressions for reduced moments of inertia which approximately
separate the coupling of internal rotation from the overall
external rotation of a molecule. As recommended by Pitzer,
these protocols are only highly accurate when the moments of
inertia for overall rotation are independent of the coordinates
of internal rotation4 (for example, any molecule with rigid
symmetrical internal tops such as ethane). However, for
molecules with one or more asymmetric internal rotors, the
external inertia tensor does depend strongly on the internal
rotation coordinate and the Pitzer approximation is less accurate.
In certain extreme situations, the rotation of one asymmetric
rotor from a trans to a gauche conformation in a massive alkane,
for example, can significantly change the principal axes of
inertia. Furthermore, Pitzer also stated that if cross terms in the
potential energy between internal rotation and vibration are
significant, the method of reduced inertias itself may be a crude
approximation.4

On the other hand, a number of groups have published
methods based on Pitzer’s formalism.6-10 However, all of these
methods are still based on the approximate treatment of Pitzer,
which implicitly neglects both mode-mode coupling and the
coupling between internal and external rotation. Here, we show
that the conventional Pitzer scheme for estimating the effective
inertia can have large differences from inertias obtained by
imposing Eckart conditions within an internal coordinate path
Hamiltonian formalism. The discrepancies are mostly due to
more accurate numerical minimization methods presently avail-

* To whom correspondence should be addressed. E-mail: rwfield@mit.edu.
Fax: 001 617 253 7030.

7406 J. Phys. Chem. A2006,110,7406-7413

10.1021/jp057504+ CCC: $33.50 © 2006 American Chemical Society
Published on Web 05/23/2006



able and are not meant to imply a criticism of Pitzer’s earlier
work, whose approximate analytical formulas were pioneering
at the time they were proposed. In this work, we introduce a
rigorous but practical formalism for computing the effective
inertia for any type of large-amplitude motion. We present
several examples of molecules in which the coupling between
the large-amplitude motion and overall rotation is complex. We
also provide numerical comparisons with other models on which
alternative methods of separating these couplings are based.
These examples and comparisons allow assessment of the
accuracy of other conventional assumptions routinely used in
computing spectroscopic properties.

II. Hamiltonian

The theory of the internal coordinate path Hamiltonian is
expressed in terms of a single large-amplitude coordinates, its
conjugate momentump̂s () -ip∂/∂s), and the coordinatesQk

(k ) 1, 2, ..., 3N - 7) and momentaP̂k () -ip∂/∂Qk) of the
orthogonal small-amplitude vibrational modes. A detailed
method for solving this Hamiltonian using a variational proce-
dure is described by Tew et al.11 Their formulation is closely
related to the reaction path Hamiltonian of Miller, Handy, and
Adams12 with the exception that the internal coordinate path
lies on or above the minimum energy path. One of the simplest
algorithms to computationally define the minimum energy path
is to optimize a saddle point on the potential energy surface
and follow the negative gradient of the energy in mass-weighted
Cartesian coordinates. However, as Tew et al. have stated, this
algorithm is not a numerically sound technique. If the reaction
path is not followed with small enough steps, one may not be
able to locate the minimum accurately at the end of the path.
Furthermore, near the saddle point, the optimized geometries
may be inaccurate since the first step away from this starting
point is along a vector that does not include any curvature.

The internal coordinate path Hamiltonian used by Tew et al.
removes many of these problems by parametrizing a path with
a single internal coordinate such as a bond length, a valence
bend angle, or in the case of internal rotations, a dihedral angle.
The internal coordinate path is defined by keeping a single
internal coordinate fixed and minimizing the energy with respect
to the other 3N - 7 degrees of freedom. An internal coordinate
is always well-defined at any point on the path and guarantees
a continuous variation with no numerical complexity. Since the
path is parametrized by an internal coordinate and does not
follow the mass-weighted gradient, the internal coordinate path
Hamiltonian is invariant under atomic isotope substitution within
the molecule. All that remains to define the path is the rotational
orientation of the molecular geometries along the internal
coordinate parametrization. In what follows, we demonstrate
that the effective inertias for large-amplitude motions should
only be calculated in a molecule-fixed axis system in which
the coupling is minimized between the motion along the path
and the rotations of the molecule.

We begin with the quantum-mechanical kinetic energy
operator11

Π̂ and π̂ are four-component operators given by

where Ĵx, Ĵy, and Ĵz are the components of the total angular
momentum operator andBkl,x, Bkl,y, Bkl,z, andBkl,s are matrices
that are functions of the large-amplitude coordinates. One also
requires the following definitions

In the following definitions,i andRâγ denote theith atom and
the xyz Cartesian components, respectively. The augmented
symmetric inertia tensorI0 is

where I0Râ are the elements of the ordinary 3× 3 Cartesian
inertia tensor along the path. The other termsI0Rs and I0ss are
given by

whereεRâγ is the Levi-Civita antisymmetric tensor. The vectors
ai () mi

1/2r i) are the mass-weighted Cartesian coordinates of
the ith atom at a point on the paths with respect to a molecule-
fixed axis system anda′i ) dai/ds. All that remains is to define
B and b; in the following discussion, we will see it is not
necessary to know the explicit forms of these matrices beyond
the fact thatB is a function ofs, andb is a 4× 4 matrix which
is merely linear inQk.

The exact kinetic energy operator in the full 3N coordinates
is too complicated to work with directly, and it is necessary to
use various approximations to the Hamiltonian which are
manageable and physically insightful. The effective moment of
inertia matrix depends weakly on the small-amplitude coordi-
natesQk.13 Expandingµde in the vibrational normal coordinates
and retaining the first term depending only ons gives

Substituting eq 7 into eq 1, and after significant operator algebra
(see the Supporting Information), we obtain the approximate
kinetic energy operator

T̂ )
1

2
∑

d,e)1

4

µ1/4(Π̂d - π̂d)µdeµ
-1/2(Π̂e - π̂e)µ

1/4 +

1

2
∑
k)1

3N-7

µ1/4P̂kµ
-1/2P̂kµ

1/4 (1)

Π̂ ) (Ĵx, Ĵy, Ĵz, p̂s)

π̂ ) ∑
k,l)1

3N-7

(Bkl,x(s), Bkl,y(s), Bkl,z(s), Bkl,s(s))QkP̂l

(2)

µde(s,Q) ) ∑
a,b)1

4

(I0 + b)da
-1I0ab(I0 + b)be

-1

µ(s,Q) ) det(µde)
(3)

I0(s) ) (I0xx(s) I0xy(s) I0xz(s) I0xs(s)
I0yx(s) I0yy(s) I0yz(s) I0ys(s)
I0zx(s) I0zy(s) I0zz(s) I0zs(s)
I0sx(s) I0sy(s) I0sz(s) I0ss(s)

) (4)

I0Rs(s) ) I0sR(s) ) ∑
i)1

N

∑
â,γ)1

3

εRâγaiâ(s)a′iγ(s)

I0ss(s) ) ∑
i)1

N

∑
R)1

3

a′iR(s)a′iR(s)

(5)

b(s) ) ∑
k)1

3N-7

Qkbk(s) (6)

µde(s,Q) ) ∑
a,b)1

4

(I0 + b)da
-1I0ab(I0 + b)be

-1 ≈ I0de
-1(s) (7)
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where the operatorp̂s operates only within the parentheses in
eq 8, that is, the next to last term in eq 8 is a scalar
pseudopotential term. Since the “vibrational angular momentum”
terms, π̂R, are linear in the small-amplitude coordinates,Qk,
neglecting their contribution to the kinetic energy gives

To remove the terms coupling the total angular momentum with
the large-amplitude momentum, one must choose molecule-fixed
axes such thatµRs ) µsR ) 0. In other words, if the molecule-
fixed axes are chosen such thatI0Rs ) I0sR ) 0, the effective
inverse moment of inertia matrixµ is block diagonal and the
kinetic energy operator becomes

Equation 10 implicitly requires numerical enforcement of the
Eckart conditions

Once the Eckart conditions are satisfied, the effective inverse
inertia for the large-amplitude coordinate is given by

From this expression, one recognizes thatµss ) I0ss
-1 is

Wilson’s14 G matrix element for the large-amplitude coordinate.
The following section describes the computational procedure
for calculating this quantity.

III. Eckart Reduced Inertias

We commence by optimizing the molecular geometries using
a quantum chemistry computational method while holding a
selected internal coordinates fixed. All conformers of the
molecule are translated to a reference frame where the origin is
at the center of mass. These molecular geometries are then
rotated to a reference frame using the internal axis method
(IAM). 15 In the IAM, the axis about which the top executes
internal rotation is chosen parallel to one of the coordinate axes.
This reference frame is just an intermediate frame which is
computationally convenient to compute the Eckart axes later.

The torsional angle dependence of all the mass-weighted
Cartesian coordinates of theith atom in the IAM frame (aiê,
aiη, aiú) is fit to a Fourier series. The corresponding mass-
weighted Cartesian coordinates of theith atom in the Eckart

frame are denoted by (aix, aiy, aiz). The orientation of the Eckart
axis system relative to the IAM frame can always be expressed
in terms of the Euler angles14

whereλRτ is the direction cosine (which is a function of the
Euler anglesθ, æ, andø) of the EckartR-axis relative to the
IAM τ-axis. Using a finite difference approximation fora′i(s)
gives

If the internal coordinate path steps are sufficiently small, the
error in estimatinga′i(s) will also be small. To minimize these
numerical errors, we use a Fourier interpolation scheme to
estimate the mass-weighted Cartesian coordinates at several
points between each optimized geometry in the IAM frame.
Substituting the finite difference approximation into eq 11
reduces the Eckart equations to

The three components of this vector equation are

The initial geometry in the Eckart frame, defined as the point
sj)0, is rotated to an orientation which diagonalizes the inertia
tensor. To determine the other rotated coordinates at pointssj+1,
we write eqs 16 in terms of the direction cosines which are
functions of the Euler anglesθ, æ, and ø. The Cartesian
coordinates at pointssj+1 in the Eckart frame can be expressed
in terms of the coordinates at pointssj+1 in the corresponding
IAM frame using eq 13. Therefore

where

with R ) x, y, or z, andτ ) ê, η, or ú. TheλRτ values in eq 17
are the direction cosine matrix elements evaluated at thej + 1

T̂ )
1

2
∑

d,e)1

4

µde(Π̂d - π̂d)(Π̂e - π̂e) +
1

2
∑
d)1

4

(p̂sµsd)(Π̂d -

π̂d) +
1

2
µ1/4(p̂sµssµ

-1/2(p̂sµ
1/4)) +

1

2
∑
k)1

3N-7

P̂k
2 (8)

T̂ )
1

2
∑

d,e)1

4

µdeΠ̂dΠ̂e +
1

2
∑
d)1

4

(p̂sµsd)Π̂d +

1

2
µ1/4(p̂sµssµ

-1/2(p̂sµ
1/4)) +

1

2
∑
k)1

3N-7

P̂k
2 (9)

T̂ )
1

2
∑

d,e)1

3

µdeΠ̂dΠ̂e +
1

2
p̂sµssp̂s +

1

2
µ1/4(p̂sµssµ

-1/2(p̂sµ
1/4)) +

1

2
∑
k)1

3N-7

P̂k
2 (10)

∑
i)1

N

ai(s) × a′i(s) ) 0 (11)

µss(s) ) (∑
i)1

N

a′i(s)‚a′i(s))
-1 (12)

[aix

aiy

aiz
] ) [λxê λxη λxú

λyê λyη λyú
λzê λzη λzú

][aiê
aiη
aiú

] (13)

a′i(sj) ≈ ai(sj+1) - ai(sj)

sj+1 - sj
(14)

∑
i)1

N

ai(sj) × ai(sj+1) ) 0 (15)

∑
i)1

N

[aix(sj)aiy(sj+1) - aiy(sj)aix(sj+1)] ) 0

∑
i)1

N

[aiy(sj)aiz(sj+1) - aiz(sj)aiy(sj+1)] ) 0

∑
i)1

N

[aiz(sj)aix(sj+1) - aix(sj)aiz(sj+1)] ) 0

(16)

[xê]λyê + [xη]λyη + [xú]λyú -
[yê]λxê - [yη]λxη - [yú]λxú ) 0

[yê]λzê + [yη]λzη + [yú]λzú -
[zê]λyê - [zη]λyη - [zú]λyú ) 0

[zê]λxê + [zη]λxη + [zú]λxú -
[xê]λzê - [xη]λzη - [xú]λzú ) 0 (17)

[Rτ] ) ∑
i)1

N

aiR(sj)aiτ(sj+1) (18)
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point. The geometryaiR(sj) in the Eckart frame and the geometry
aiτ(sj+1) in the IAM frame are known quantities, so eq 17 is a
set of three simultaneous transcendental equations involving only
the three Euler angles. We solve this nonlinear system of
equations using the Powell dogleg method.16 This system of
equations is highly nonlinear and can require several function
evaluations to reach convergence. In our computer program
available via the Internet,17 we have implemented analytical
Jacobians in the dogleg method to maximize computational
efficiency. This system of transcendental equations is solved
iteratively with initial guesses of the Euler angles at pointsj+1

taken from the known Euler angles at pointsj. After this
procedure is carried out for all the geometries (aiê, aiη, aiú), a
finite difference approximation can be used to obtain (a′ix, a′iy,
a′iz) in the Eckart frame and one has all the information needed
to calculate the effective inertia in eq 12.

IV. Pitzer Reduced Inertias

The method of calculating the effective moment of inertia
with Pitzer’s formulas is well-known,3-5,8,10and we only briefly
review the method in this section. Pitzer’s expression for the
reduced moment of inertia for a single internal rotation is given
by

where

The superscriptsi - 1 andi + 1 are cyclic indices such that if
i ) 1, i - 1 ) 3, and if i ) 3, i + 1 ) 1. The array

is the direction cosines between the axes of the rotating top (x,
y, z) and the axes of the whole molecule (1, 2, 3). The internal

rotation axis is taken as thez-axis of the top, and thex-axis
passes through the top’s center of mass. The axes of the whole
molecule are those which pass through the center of mass and
diagonalize the inertia tensor. All of Pitzer’s expressions are
based on the kinetic energy expression of Kassel18 and Craw-
ford,19 which uses a principal axis method (PAM)15 for
molecular-fixed axes. It should be noted that these and the
following expressions give the same results whether one includes
or does not include atoms on the axis of rotation as part of the
top. The following quantities are defined only with respect to
the coordinate system of the top, which is composed of theith
atom with massmi

Finally, the components of the vector (r1, r2, r3) in eq 20 point
from the center of gravity of the whole molecule in the PAM
reference frame to the origin of coordinates of the top.

V. Examples and Applications

In Table 1, we compare the results of eq 12 against eq 19 for
several molecules that have a single unsymmetrical torsion.
Table 1 also gives the parameters characterizing the local
minima along the torsional coordinate for each molecule:U is
the torsional potential energy of a local minimum relative to
the globally lowest minimum,IEckart is the effective inertia
calculated from eq 12, andIPitzeris the effective inertia calculated
from eq 19. All ab initio electronic structure calculations for
these molecules were carried out with the Gaussian 03 package20

using the second-order Møller-Plesset perturbation level of
theory for all electrons (MP2(full)). The standard 6-31G(d) basis
set with the MP2(full) level of theory used in the present work
is the same methodology employed in geometry optimizations
in Pople’s G3 composite procedures.21 The point of the
calculations presented is to provide reasonable and consistent
geometries to test the accuracy of other conventional assump-
tions used in computing effective inertias. The purpose is not
to resolve the many open questions regarding how best to
calculate ab initio torsional potentials on the specific molecules
presented as illustrative examples. For each molecule, the
torsional potential was calculated by constraining a dihedral
angle and optimizing all other internal coordinates to minimize
the total energy.

Of the six molecules listed in Table 1, hydrogen peroxide,
1,2-dichloroethane, and 1-fluoro-2-chloroethane were previously
analyzed by Chuang and Truhlar.10 The last column of Table 1
lists the available literature values from Chuang and Truhlar,
who also used the same Pitzer approximation described in
section IV of the present work. We draw attention to the large
deviation of their results from our calculations, especially for
the case of 1,2-dichloroethane, ClH2C-CH2Cl. Extensive
theoretical7,22-24 and a few experimental25,26studies have already
been carried out on this asymmetric torsional motion. One of
the first studies on 1,2-dichloroethane in the current literature
is the finite-difference-boundary-value treatment by Chung-

TABLE 1: Effective Moments of Inertia Obtained from eqs
12 and 19

torsional angle
(degrees)

U
(cm-1)

IEckart
a

(amu Å2)
IPitzer

b

(amu Å2)
IPitzer

c

(amu Å2)

HO-OH
minimum 1 121.2° 0 0.4373 0.4357 0.3951

OHC-CHO
minimum 1 180.0° 0 4.445 4.985
minimum 2 0.0° 1505 2.818 3.021

H2CHC-CHCH2

minimum 1 180.0° 0 5.338 6.236
minimum 2 37.8° 936.8 3.460 4.589

FH2C-CH2F
minimum 1 69.0° 0 9.390 8.749
minimum 2 180.0° 74.83 8.490 8.910

ClH2C-CH2F
minimum 1 180.0° 0 11.05 11.55 18.37
minimum 2 65.9° 164.9 11.34 11.59 25.28

ClH2C-CH2Cl
minimum 1 180.0° 0 15.76 16.37 17.56
minimum 2 68.2° 531.7 15.15 17.84 207.8

a Using eq 12.b Using eq 19.c Literature values from ref 10.

I ) A - ∑
i

[(RiyU)2

M
+

(âi)2

Ii
] (19)

âi ) RizA - RixB - RiyC + U(Ri-1,yri+1 - Ri+1,yri-1) (20)

[R1x R2x R3x

R1y R2y R3y

R1z R2z R3z] (21)

A ) ∑
i

mi(xi
2 + yi

2)

B ) ∑
i

mixizi

C ) ∑
i

miyizi

U ) ∑
i

mixi

(22)
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Phillips.22 Her analysis includes an ab initio calculation of the
relaxed geometries and torsional potential performed at the HF/
6-31G* level of theory. Using the HF/6-31G* adiabatic potential
energy curve, Chung-Phillips calculated one trans minimum and
two equivalent gauche minima withIPitzer values of 16.46 and
17.93 amu Å2, respectively. Although the Hartree-Fock method
used in her work is not quantitatively accurate, her two values
of IPitzerare still in extraordinary agreement with our calculations
in Table 1. More recently, Ayala and Schlegel have revisited
the calculation ofIPitzer for 1,2-dichloroethane and found in
section III of their work that the reduced moment of inertia
increases only by a factor of 2 (in contrast to Chuang and
Truhlar’s factor of 12) as the twist angle is varied.7 One of the
latest studies on 1,2-dichloroethane torsional motion is from

the work of Hnizdo and co-workers, who have used the Pitzer
formalism to estimate entropies of internal rotation via Monte
Carlo simulations.24 In Figure 2 of their work, they have plotted
the variation ofIPitzer

1/2 as a function of the torsional angle, and
they obtain results which are in excellent agreement with Figure
1f of the present work. The good consistency of our results with
respect to these three literature values supports our tabulated
values, and our method of calculatingIPitzer appears to be well-
justified.

Figure 1 compares the Eckart and Pitzer effective inertias
for the six molecules listed in Table 1. For each figure, both
the Eckart and Pitzer inertias were calculated using the same
molecular geometries on a regular grid of 10° increments for
the torsional angle. An interesting feature of these figures is

Figure 1. (a-f) Eckart effective inertias (eq 12) for six molecules displaying internal rotation compared with those calculated from Pitzer’s
formulas (eq 19).
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that both methods yield similar results for H2O2, but the
differences between the two methods become more significant
as the rotating top becomes more asymmetric. Among these
calculations, we see considerable quantitative and qualitative
discrepancies between the two methods for 1,3-butadiene. The
torsional potential energy surface of 1,3-butadiene has a local
minimum near 40° corresponding to a gauche configuration.
At this value of the torsional angle, the Eckart effective inertia
also has a minimum but this feature is absent in the Pitzer
calculations. For the asymmetric torsions studied, it is apparent
the Eckart effective inertias show more structure and variation
as a function of torsional angle than the corresponding Pitzer
inertias.

To demonstrate the effects of using the Eckart and Pitzer
formalisms on dynamical properties, we calculate a converged
set of eigenvalues and eigenvectors for 1,2-dichloroethane
utilizing the one-dimensional kinetic energy operator given by
the first three terms of eq 10. Figure 2 compares the lowest
2500 torsional energies evaluated (1) using the instantaneous
Eckart inertias displayed in Figure 1f and (2) using only the
constant value of the Pitzer inertia at the global trans minimum.
Both methods give eigenvalues close to each other for torsional
quanta less than 50, but the eigenvalues obtained from the
instantaneous Eckart calculations are generally much larger than
the results derived from the constant Pitzer inertia. The
differences between the two methods are even more pronounced

when the number of torsional quanta becomes greater than 100,
and after 2500 quanta of the torsion is reached, the Eckart
eigenvalues are larger than the Pitzer eigenvalues by more than
272 000 cm-1. This discrepancy can be simply understood
realizing that the allowed eigenvalues for free rotation in one
dimension areEm ) m2p2/2I with m ) 0, (1, (2, .... For 1,2-
dichloroethane at our simple MP2 level of theory, this free
rotation limit is only reached when the number of torsional
quanta exceeds 90 and the eigenvalues become doubly degener-
ate as shown in Figure 3a. Below the free rotation limit, the
torsional wave functions have distinct, nondegenerate energies
corresponding to alternating symmetric (red-colored) and an-
tisymmetric (green-colored) torsional states.

Figure 3b shows the 150 lowest torsionally averaged Eckart
inertias,〈IEckart〉, of 1,2-dichloroethane obtained by evaluating
the instantaneous Eckart inertias in Figure 1f averaged over each
of the torsional wave functions. The averaged Eckart inertias
are also color-coded to match their symmetric (red)/antisym-
metric (green) energy levels in Figure 3a. The dotted horizontal
line is the numerical value for the Pitzer effective inertia
evaluated at the trans global minimum. Forn < 5, 〈IEckart〉 does
not vary appreciably from 15.76 amu Å2 since the torsional wave
function is localized in the trans global minimum. For 5< n <
90, 〈IEckart〉 varies rapidly since the torsional wave function
alternates between the two gauche local minima and the single
trans minimum. As discussed previously, the torsion is nearly
a free rotation forn > 90, and〈IEckart〉 is approximately constant
with a limiting value of approximately 15.1 amu Å2. Since the
free rotation energy,Em, is proportional toI-1, basing the
torsional energies on the larger Pitzer inertia would significantly
underestimate the Eckart eigenvalues above the free rotation
limit (cf. Figure 2).

As a final application, we calculate the effective inertia for
the large-amplitude motion describing the isomerization of
acetylene to vinylidene. Since we are primarily interested in
the local bender limit of this 1,2-hydrogen rearrangement
process, the most intuitive choice for the large-amplitude
parameters is the internal HCC bend angle in acetylene. While
CC-HH diatom-diatom coordinates are much better suited for
describing vinylidene and H-atom orbiting states,27-28 they are
more awkward to use at low energies below the vinylidene
isomerization barrier.29-31 For this reason, we obtained our
internal coordinate path by constraining the HCC angle at 5°
increments while optimizing all other internal coordinates to
minimize the total energy. The electronic structure calculations
for the relaxed molecular geometries of acetylene were carried

Figure 2. Lowest 2500 eigenvalues for the torsional motion of 1,2-
dichloroethane. The eigenvalues obtained from the instantaneous Eckart
inertias are considerably larger than those obtained from a constant-
valued Pitzer inertia at the trans geometry.

Figure 3. (a) Relaxed torsional potential and energies for 1,2-dichloroethane obtained at the MP2(full)/6-31G(d) level of theory. Each of the
torsional eigenvalues is associated with symmetric (red-colored) and antisymmetric (green-colored) torsional states. (b) Torsionally averagedEckart
inertias,〈IEckart〉, for the lowest 150 torsional states of 1,2-dichloroethane. The broken line indicates the numerical value ofIPitzer ) 16.37 amu Å2

calculated at the trans global minimum.
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out using the coupled cluster with single and double substitutions
level of theory for all electrons (CCSD(full)). The basis set used
at this level of theory was Dunning’s augmented correlation
consistent triple-ú basis, aug-cc-pvtz.32

Figure 4 shows the effective inertia as a function of the bend
angle up to a final value of 153°, which corresponds to the
equilibrium geometry of vinylidene. The method of Pitzer cannot
be applied to this type of large-amplitude motion, but the
effective inertia can still be calculated easily by solving eq 12
as described in section III. As shown in Figure 4, the isomer-
ization from acetylene to vinylidene involves one hydrogen
migrating a large distance off the C-C bond axis while the
other hydrogen remains relatively stationary. The transition state
structure for the isomerization process emerges when the active
hydrogen makes an angle of approximately 110° as measured
from the equilibrium linear geometry. Once the HCC bend angle
is increased past the transition state structure, large variations
in geometries occur as the right-most hydrogen moves in concert
with the left-most hydrogen and the C-C triple bond lengthens
to a double bond. Since the Eckart inertia is proportional to
a′i(s)‚a′i(s) (cf. eq 12), and the geometry changes rapidly past
the transition state, the effective inertia is significantly larger
for HCC bend angles greater than 110°. In a later paper, this
method has been used in conjunction with an effective Hamil-
tonian model to describe the Stark effect as a diagnostic tool
for recognizing and assigning local-bender excited vibrational
states.2

VI. Conclusion

We have presented a method by which accurate inertias for
internal rotations and other large-amplitude motions may be
calculated by rigorously separating this motion from the external
rotation. It was shown that the conventional Pitzer scheme for
estimating the effective inertia can result in large differences
from the Eckart method, which minimizes the couplings of
torsions to rotations. This is apparent if one remembers that
the Pitzer method is inherently based on a coordinate system
used from PAM. If the rotating top has an axis of symmetry,
the principal axes of the molecule do not change significantly
as the torsional angle is varied. However, if both the rotating
top and the frame of the molecule are heavy and asymmetric,
the cross terms which represent the interactions between the
two kinds of rotation (cf. eq 9) are much larger in PAM/Pitzer’s
method than in the Eckart frame. To correct this inadequacy, it

is necessary to go beyond approximate analytical formulas to
pursue numerical methods of minimizing these couplings.

We also show that the Eckart method is general and applies
to other large-amplitude motions such as large variations in angle
bends. In a one-dimensional description of the acetylene/
vinylidene isomerization, the procedure is essential since it
minimizes several of the coupling terms between the large-
amplitude bend and the overall rotation. This is particularly
important since the relaxed geometries describing the 1,2-
hydrogen rearrangement do not change uniformly along the
isomerization path. A user-friendly code for computing the
Eckart inertia as a function of the torsional angle is available.17

These computer programs automatically solve the nonlinear set
of equations in eq 17 and output the reduced inertias as a
function of the torsional angle. All of the examples presented
in Table 1 are also available as sample inputs for these codes.
We recommend the Eckart method described in section III as
an alternative to the conventional Pitzer method when asym-
metric tops are present.
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